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Abstract

A time-accurate algorithm is proposed for low Mach number, variable density flows with or without chemical reac-
tions. The algorithm is based on a predictor–corrector time integration scheme that employs a projection method for
the momentum equation. A constant-coefficient Poisson equation is solved for the pressure following both the predictor
and corrector steps to fully satisfy the continuity equation at each time step. Spatial discretization is performed on a
collocated grid system that offers computational simplicity and straightforward extension to curvilinear coordinate
systems. To avoid the pressure odd–even decoupling that is typically encountered in such grids, a flux interpolation
technique is introduced for the equations governing variable density flows. An important characteristic of the proposed
algorithm is that it can be applied to flows in both open and closed domains. Its robustness and accuracy are illustrated
with a series of numerical experiments. In particular, we present simulations of non-isothermal, turbulent channel flow
as well as simulations of a premixed flame–vortex interaction.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Variable density, low Mach number flows have attracted a lot of interest over the years due to their
applicability in numerous natural phenomena and technological processes. Typical examples include mete-
orological flows, flows with convective and/or conductive heat transfer, premixed and diffusion flames, and
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many others. Although in low Mach number flows pressure variations are typically small, density and tem-
perature gradients can be large due to heat transfer and/or heat release from chemical reactions.

A straightforward approach for the numerical treatment of the flows of interest is to implicitly discret-
ize the compressible governing equations in time and modify the resulting (implicit) discrete system of
equations by adding a pseudo-time derivative, Jameson [10]. The solution of the implicit system at the
new time level is the steady-state solution of this modified system of equations in pseudo-time and could
be obtained with an iterative method. For low Mach number flows, different acceleration techniques such
as preconditioning, multigrid and residual smoothing, could be used to increase the efficiency of the iter-
ative method, Venkateswaran et al. [28], Lessani et al. [12]. With such an implicit method, one could use
a large time-step (not limited by the sound speed) if acoustic waves are not to be solved accurately. This
approach, however, is still computationally expensive due to the overhead of the iterative method that is
necessary to solve the implicit, discretized system of equations. Therefore, this approach is potentially
useful only in cases where a generally low Mach number flow-field contains some small and limited re-
gions of moderate or high Mach numbers. The existence of such regions would then necessitate the use of
such a compressible solver.

If the Mach number in the entire flow-field is low, then the so-called low Mach number approximation
could be applied to the governing equations. This approximation results in the decoupling of the acoustic
modes from the vorticity and entropy modes; see, for example, [4,5,14–16,21–23,26]. The set of equations
resulting from the low Mach number approximation may be solved using an extension of the projection
method, initially applied to incompressible flows by Chorin [2].

In the projection method, taking the divergence of the discretized momentum equation leads to a Pois-
son equation for the pressure. In constant density flows, the velocity field u at any time level n is divergence
free, i.e., $ Æ un = $ Æ un+1 = 0. In variable density flows, however, when the divergence is applied to the dis-
crete momentum equations, one has to calculate the divergence of qu at time level n + 1, $ Æ (qu)n+1, with q
being the density of the fluid. This term is generally replaced by the time derivative of the density oq/ot,
from the continuity equation. The discrete form of this derivative still remains a controversial issue.

Cook and Riley [4] reported that this time derivative was the most destabilizing part of their calculations.
They further reported that using a second-order explicit approximation for this derivative, along with a
third-order Adams–Bashforth method for the momentum equations, is stable for density ratios up to 3.
They also stated that even-ordered approximations to the density time derivative were more stable than
odd-ordered ones. However, Charentenay et al. [5] used a third-order backward finite-difference formula-
tion for this derivative in their premixed ozone flame simulation with a density (temperature) ratio of 3.64
and they did not report any stability problems.

On the other hand, Najm et al. [21] proposed a predictor–corrector method for the flows of interest in
open domains. They reported that such a method increases the robustness of the algorithm. In particular,
they successfully applied their algorithm to the 2D problem of the interaction between a counter-rotating
vortex pair and a premixed methane-air flame, with the temperature rising from 300 to 1900 K across the
flame. In their approach, the time derivatives of the temperature, density and species mass fractions are
calculated from the corresponding balance equations. The new values for the density and species mass frac-
tions are determined using an Adams–Bashforth method at the predictor step and a quasi Crank-Nicolson
method at the corrector step. At each step the temperature distribution is calculated from the equation of
state. In that approach, however, the computation of the total mass of the system is affected by the discret-
ization errors. This has a profound effect in the numerical solution of the Poisson equation in cases of
closed domains, where the total mass of the system has to remain exactly constant. This issue is discussed
in detail in the present study.

More recently, Nicoud [22] proposed an algorithm that is based on a mixed Runge–Kutta/Crank–Nicol-
son time stepping and a variable-coefficient Poisson equation for the pressure. If a variable-coefficient Pois-
son is used, then one has to approximate $ Æ un+1, instead of $ Æ (qu)n+1, on the right-hand side of the
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Poisson equation. An expression for the velocity divergence can be directly derived from the governing
equations. More specifically, it can be shown that the divergence of the velocity field is inversely propor-
tional to the Reynolds number. (This implies that in the inviscid limit, Re ! 1, the divergence-free con-
straint of the velocity is recovered). Nicoud [22] also mentioned that the use of a constant-coefficient
Poisson solver, although more efficient from a computational point of view, makes the calculations unstable
for density (temperature) ratios more than 4.

Finally, Pierce [23] spatially filtered the time derivative of the density, using the test-filter operator of the
dynamic procedure for large-eddy simulation (LES) of turbulent flows, Germano et al. [8], Moin et al. [17],
and stated that it could greatly improve, but not completely guarantee, the stability of the algorithm. He
used an iterative semi-implicit scheme, where only the stiffest terms in each equation are treated implicitly.
He reported that according to his experience, flows with weak density variations require two or three iter-
ations, while reacting flows with large density ratios may require four or five iterations.

In the present article, we describe an alternative approach for the development of a robust algorithm for
time-accurate calculations of variable density flows with or without chemical reactions. The proposed algo-
rithm solves numerically the low Mach number approximation of the balance equations with a predictor–
corrector time integration scheme. This scheme employs a projection method for the momentum equation
that results in a constant-coefficient Poisson equation.

Instead of using a staggered grid system, which is the common choice for time accurate calculations, we
have adopted a collocated grid. The benefits of employing a collocated grid are computational simplicity
and straightforward extension of the method to curvilinear coordinate systems. To avoid the problem of
pressure odd–even decoupling, which is commonly encountered in collocated grids, a flux interpolation
technique for incompressible flows, Morinishi et al. [18], Rhie and Chow [27], is generalized herein to var-
iable density ones. Numerical experiments conducted in the context of the present study, some of which are
presented below, have shown that with a careful treatment of the Poisson equation, the algorithm remains
stable for high density (temperature) ratios.

The article is organized as follows. The governing equations and the low Mach number approximation
are described in Section 2. The numerical algorithm is described in detail in Section 3. Further, Section 4
contains results of numerical simulations of a non-isothermal, turbulent channel flow and a premixed
flame–vortex interaction. Finally, Section 5 contains some general remarks and a discussion of the overall
effectiveness of the proposed algorithm for computing variable density flows.
2. Governing equations

In this section, we present the governing equations for the flows of interest and we provide a brief
description of the low Mach number approximation.
2.1. Non-dimensional equations

In what follows, a superscript ��� denotes a dimensional quantity while a subscript �ref� denotes a refer-
ence quantity. Let us consider a fluid consisting of N chemically reacting species in the absence of body
forces and radiation. The reaction mechanism is assumed to involve M elementary reactions. Further,
let x̂i, t̂, q̂, ûi, p̂, bT , denote the ith spatial coordinate, time, density, ith velocity vector component, pressure
and temperature, respectively. Further, let bY k, Dĥ

0

k and Wk denote the kth species concentration, formation
enthalpy and molar weight, respectively. The dynamic viscosity and thermal conductivity of the mixture are
denoted by l̂ and ĵ, respectively. Also, the mixture specific heats are weighted averages of the specific heats
of the species, ĉp ¼

PN
k¼1ĉp;k bY k and ĉv ¼

PN
k¼1ĉv;k bY k.
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The above quantities are non-dimensionalized as follows:
xi ¼ x̂i=Lref ; t ¼ t̂uref=Lref ; ð1Þ
q ¼ q̂=qref ; ui ¼ ûi=uref ; p ¼ p̂=ðqrefu

2
refÞ; T ¼ bT =T ref ; ð2Þ

l ¼ l̂=lðT refÞ; j ¼ ĵ=jðT refÞ; ð3Þ
cp ¼ ĉp=cpðT refÞ; cv ¼ ĉv=cvðT refÞ; ð4Þ

Y k ¼ Ŷ k=Y k;ref ; Dh0k ¼ Dĥ
0

k=ðcpðT refÞT refÞ; k ¼ 1; . . . ;N . ð5Þ
The Prandtl number, Pr, Reynolds number, Re and Mach number, M, of the flow are defined with respect
to the reference values. Therefore,
Pr ¼ lðT refÞcpðT refÞ
jðT refÞ

; Re ¼ qrefurefLref

lðT refÞ
; M ¼ urefffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cT refR=W
p ; ð6Þ
respectively. In the definition of the Mach number above, c is the ratio of specific heats at the reference
temperature, c = cp(Tref)/cv(Tref), R is the universal gas constant and W is the mean molecular weight
of the mixture, W ¼ ð

PN
k¼1Y k=W kÞ�1.

The mixture is assumed to be a perfect gas and its equation of state is written as
p ¼ qT

cM2
. ð7Þ
For the sake of computational efficiency it is assumed that the Nth species is dominant so far as transport
properties are concerned. Therefore, the mixture transport properties are the same as those of the dominant
species. A simplified Sutherland law is used for the dimensionless thermal conductivity j and dynamic vis-
cosity l,
l ¼ j ¼ T 0.7. ð8Þ

The assumption that the Nth species is dominant so far as transport properties are concerned also implies
that mass diffusion between any two species k and j (k 6¼ N, j 6¼ N) is negligible. It is further assumed that
the diffusivities DkN between species k and N are all equal (henceforth denoted by DN ), and that the specific
heats of each species cp, k are all equal (henceforth denoted by cp), as well.

Under the above assumption, the Lewis numbers of the species are all equal, henceforth denoted by
Le. Finally, for computational simplicity, it is assumed that the Lewis number equals unity, i.e.,
Le ¼ j=ðqcpDN Þ ¼ 1. Therefore, in the terms that describe Fickian diffusion, the product qDN is re-
placed by the ratio j/cp and the Schmidt number is replaced by the Prandtl number. With these
assumptions in mind, the mass, momentum, energy and species balance equations are written in index
notation as
oq
ot

þ oqui
oxi

¼ 0; ð9Þ

oqui
ot

þ oquiuj
oxj

¼ � op
oxi

þ 1

Re
orij

oxj
; ð10Þ

qcp
oT
ot

þ qcpuj
oT
oxj

� ðc� 1ÞM2 op
ot

þ ui
op
oxi

� �
¼ 1

RePr
o

oxj
j
oT
oxj

� �
þ c� 1

Re
M2rij

oui
oxj

þ
XN
k¼1

hk _wk; ð11Þ

q
oY k

ot
þ quj

oY k

oxj
¼ 1

RePr
o

oxj

j
cp

oY k

oxj

� �
� _wk; k ¼ 1; . . . ;N � 1. ð12Þ
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In the energy and momentum equations above, rij is the viscous stress tensor, given by
rij ¼ l
oui
oxj

þ ouj
oxi

� 2

3
dij

ouk
oxk

� �
. ð13Þ
Also in the energy equation, hk is the specific enthalpy of the kth species, hk ¼ Dh0k þ
R T
0
cp;kdT and _wk are

the chemical source terms for each species. These source terms are generally given by _wk ¼
PM

l¼1 _wkl with _wkl

being the mass rate of production per unit volume of the kth species by the lth reaction. When the specific
heats under constant pressure are equal for all species, then

PN
k¼1hk _wk ¼

PN
k¼1Dh

0
k _wk; see, Poinsot and

Veynante [24].

2.2. Low Mach number approximation

The low Mach number equations are derived by expanding the flow variables of the governing equations
(9)–(12) as power series in e = cM2 � 1, with M being the Mach number (see also [4,14,26]),
q ¼ qð0Þ þ eqð1Þ þ � � � ;
ui ¼ uð0Þi þ euð1Þi þ � � � ;
T ¼ T ð0Þ þ eT ð1Þ þ � � � ;
Y k ¼ Y ð0Þ

k þ eY ð1Þ
k þ � � � ; k ¼ 1; . . . ;N ;

p ¼ qT

cM2
¼ 1

e
pð0Þ þ pð1Þ þ � � �

ð14Þ
Substituting these expansions into the conservation equations (9)–(12), and into the ideal gas law (7), and
subsequently collecting the lowest order terms in e, we finally arrive at the low Mach number approxima-
tion equations
oqð0Þ

ot
þ oqð0Þuð0Þi

oxi
¼ 0; ð15Þ

oqð0Þuð0Þi

ot
þ
oquð0Þi uð0Þj

oxj
¼ � opð1Þ

oxi
þ 1

Re

orð0Þ
ij

oxj
; ð16Þ

qð0Þcp
oT ð0Þ

ot
þ qð0Þcpu

ð0Þ
j

oT ð0Þ

oxj
¼ 1

RePr
o

oxj
j
oT ð0Þ

oxj

� �
þ c� 1

c
dpð0Þ

dt
þ
XN
k¼1

Dh0k _wk; ð17Þ

qð0Þ oY
ð0Þ
k

ot
þ qð0Þuð0Þj

oY ð0Þ
k

oxj
¼ 1

RePr
o

oxj

j
cp

oY ð0Þ
k

oxj

 !
� _wð0Þ

k ; k ¼ 1; . . . ;N � 1; ð18Þ

opð0Þ

oxi
¼ 0; ð19Þ

pð0Þ ¼ qð0ÞT ð0Þ. ð20Þ
Eq. (20) is obtained directly by inserting the expansions for q and T into the expansion of p, cf. (14). We
observe that the pressure field is decomposed into a spatially uniform component p(0) which is interpreted as
the thermodynamic pressure, and a variable component p(1), interpreted as the dynamic pressure.

As regards the evolution of p(0), the following three cases are possible: (i) the system is open, (ii) the sys-
tem is closed and (iii) the system is semi-open so that there is a restricted opening (for example, a crack)
between the flow domain and its exterior. In the case of an open system p(0) is constant and equal to the
open boundary pressure. For a closed system, p(0) may vary in time but the total mass remains constant
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and equals the volume integral of the density, M0 = �q(0)dV. Then, by dividing the two sides of (20) by T(0)

and integrating over the volume V, the following expression for p(0) is readily obtained,
pð0Þ ¼ M0R
dV
T ð0Þ

. ð21Þ
For the case of a semi-open system, by combining Eqs. (15), (17) and (20) and integrating the resulting
equation over the computational domain V, the following ordinary differential equation for p(0) may be ob-
tained (see Rehm et al. [26], Nicoud [22] for details),
dpð0Þ

dt
¼ 1R

c�1
c � cp

� �
dV

�1

RePr

Z
o

oxj
j
oT ð0Þ

oxj

� �
dV �

Z XN
k¼1

Dh0k _wkdV þ pð0Þ
Z

cp
ouð0Þi

oxi
dV

" #
. ð22Þ
Even though this case can be easily incorporated into the proposed numerical algorithm, in the present
study we focus our attention to open or closed systems.
3. Numerical method

The proposed numerical method is based on a predictor–corrector method to march in time. As men-
tioned earlier, this method can be applied to open as well as closed domains. Then, p(0) is either constant
or is calculated from Eq. (21). The second term in the expansion of the pressure, p(1), can be calculated by a
projection method which is described in detail herein. It is interesting to mention that a predictor–corrector
scheme had previously been adopted for the flows of interest in [21]. However, the method presented in [21]
was designed for open domains only. For the sake of clarity, the superscripts (0) and (1) will henceforth be
dropped, except to distinguish between p(0) and p(1).
3.1. Predictor–corrector projection scheme

In this subsection, the structure of the time integration algorithm is discussed in detail. The time step is
Dt with tn+1 = tn + Dt. Superscripts n, * and n + 1 denote the known values at the time level n, the pre-
dicted or intermediate values and the values at the next time level n + 1, respectively. As already mentioned,
the algorithm consists of two stages, the corrector and the predictor stages, respectively.

3.1.1. Predictor

(i) The predicted value for the temperature, T*, is calculated from Eq. (17) based on the previous values
at time level n,
qncp
T � � T n

Dt
¼ ResT ðqn; un; T nÞ þ c� 1

c
pð0Þn � pð0Þn�1

Dt
þ
Xk¼N

k¼1

Dh0k _wkðqn; Y n
k ; T

nÞ. ð23Þ
In the equation above u = (u1, u2, u3) is the velocity vector and ResT is the sum of the following con-
vective and heat-transfer residuals,
ResT ¼ �qcpuj
oT
oxj

þ 1

RePr
o

oxj
j
oT
oxj

� �
. ð24Þ
(ii) For closed systems, the predicted value for the thermodynamic pressure p(0)*, is calculated from Eq.
(21),
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pð0Þ� ¼ M0R
dV
T �
. ð25Þ
For open systems, however, this equation is no longer valid. In these cases, p(0)* is set equal to the
open boundary pressure.

(iii) The predicted value for the density, q*, is evaluated from Eq. (20) which connects the first-order terms
of the expansions of the thermodynamic variables,
q� ¼ pð0Þ�

T � . ð26Þ
(iv) In this step, predictions for the velocity vector and the dynamic pressure are calculated. An Adams–
Bashforth method is used for the momentum equation (16),
q�u� � qnun

Dt
¼ 3

2
Resuðqn; unÞ � 1

2
Resuðqn�1; un�1Þ � opð1Þ�

oxi
; ð27Þ
where Resu is the sum of the following convective and viscous residuals,
Resu ¼ � oquiuj
oxj

þ 1

Re
orij

oxj
. ð28Þ
Taking the divergence of (27) gives,
r � q�u�

Dt

� �
�r � q�~u

Dt

� �
¼ �r2pð1Þ�; ð29Þ
with,
q�~u

Dt
� qnun

Dt
þ 3

2
Resuðqn; unÞ � 1

2
Resuðqn�1; un�1Þ. ð30Þ
From the continuity equation (15), the term $ Æ (q*u*) equals the time derivative of the density, (oq/
ot)*. A second-order approximation is used for this derivative,
r � ðq�u�Þ ¼ � oq
ot

� ��

¼ � 3q� � 4qn þ qn�1

2Dt
. ð31Þ
The predicted value of the dynamic pressure p(1)* is computed by inserting (30) and (31) into (29) and
solving numerically the resulting constant-coefficient Poisson equation. Having computed p(1)*, the
predicted value of the velocity vector u* is calculated from (27).

(v) The predicted values for the species concentration, Y �
k , are obtained from Eq. (18) in a way that is

similar to the one that was used to get the prediction of the temperature in step i,
q� Y
�
k � Y n

k

Dt
¼ ResY k ðq�; u�; Y n

kÞ � _wkðq�; Y n
k ; T

�Þ; k ¼ 1; . . . ;N � 1; ð32Þ
with ResY k being the sum of the following convective and mass-diffusion residuals:
ResY k ¼ �quj
oY k

oxj
þ 1

RePr
o

oxj

j
cp

oY k

oxj

� �
. ð33Þ
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3.1.2. Corrector

(i) The temperature at the new time level n + 1, Tn+1, is calculated from Eq. (17) based on the values
computed in the predictor stage,
q�cp
T nþ1 � T n

Dt
¼ ResT ðq�; u�; T avÞ þ

c� 1

c
pð0Þn � pð0Þn�1

Dt
þ
Xk¼N

k¼1

Dh0k _wkðq�; Y �
k ; T avÞ; ð34Þ
with Tav = (Tn + T*)/2.
(ii) If the domain is closed the thermodynamic pressure p(0)n+1 is calculated by
pð0Þnþ1 ¼ M0R
dV
T nþ1

. ð35Þ
If the domain is open, p(0)n+1 is set equal to the open boundary pressure.
(iii) The density qn+1 at time level n + 1 is calculated by
qnþ1 ¼ pð0Þnþ1

T nþ1
. ð36Þ
(iv) In this step, the velocity vector at the new time level n + 1 is determined from the momentum equation
(16),
qnþ1unþ1 � qnun

Dt
¼ 3

2
Resuðqn; unÞ � 1

2
Resuðqn�1; un�1Þ � opð1Þnþ1

oxi
. ð37Þ
Further, taking the divergence of (37) gives,
r � qnþ1unþ1

Dt

� �
�r � qnþ1�u

Dt

� �
¼ �r2pð1Þnþ1; ð38Þ
with,
qnþ1�u

Dt
¼ qnun

Dt
þ 3

2
Resuðqn; unÞ � 1

2
Resuðqn�1; un�1Þ. ð39Þ
From the continuity equation (15), the term $ Æ (qn+1un+1) equals the time derivative of the density
(oq/ot)n+1. As in the predictor stage, a second-order approximation is used for this derivative,
r � ðqnþ1unþ1Þ ¼ � oq
ot

� �nþ1

¼ � 3qnþ1 � 4qn þ qn�1

2Dt
. ð40Þ
The velocity vector un+1 is evaluated from (37), while the dynamic pressure p(1)n+1 is computed by
inserting (39) and (40) into (38) and, subsequently, solving the resulting equation with a Poisson
solver.

(v) Based on the final values of the density, velocity and temperature, the species equation (18) is
updated,
qnþ1 Y
nþ1
k � Y n

k

Dt
¼ ResY k ðqnþ1; unþ1; Y av

k Þ � _wkðqnþ1; Y av
k ; T

nþ1Þ; k ¼ 1; . . . ;N � 1; ð41Þ
with Y av
k ¼ ðY n

k þ Y �
kÞ=2.

(vi) The temperature equation is reintegrated from time tn to tn+1, with the same two-stage method using
the final values of the density and velocity. In other words, the following operations are performed,
qnþ1cp
T � � T n

Dt
¼ ResT ðqnþ1; unþ1; T nÞ þ c� 1

c
pð0Þn � pð0Þn�1

Dt
þ
Xk¼N

k¼1

Dh0k _wkðqnþ1; Y nþ1
k ; T nÞ ð42Þ
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and
qnþ1cp
T nþ1 � T n

Dt
¼ ResT ðqnþ1; unþ1; T avÞ þ

c� 1

c
pð0Þn � pð0Þn�1

Dt
þ
Xk¼N

k¼1

Dh0k _wkðqnþ1; Y nþ1
k ; T avÞ ð43Þ
with Tav = (Tn + T*)/2.

The motivation for step (vi), cf. (42) and (43), came from numerical experiments on LES of non-isother-
mal, turbulent channel flow. To fix ideas, let us consider flow between two walls that are maintained at dif-
ferent temperatures and let qh be the heat flux from the hot wall to the fluid and qc the heat flux from the
fluid to the cold wall. In a statistically stationary flow, the time average of qh � qc should be zero. However,
in our simulations it was observed that, without this additional operation, the time average of qh � qc
would take a non-zero value. This is an energy conservation error and, as our numerical tests showed,
can be reduced substantially by the additional calculation of (42) and (43). For example, in channel flow
with wall temperature ratio equal to 9, the error on the time average of (qh � qc)/qc dropped from 0.187
to 0.039 by employing the additional calculation of the energy equation.

Essentially this re-integration of the energy equation can be generalized to an outer iteration loop for all
balance equations. Such iterative procedures have been employed in [9,23]. In our test cases, the error in the
time average of (qh � qc)/qc was sufficiently small after completion of step (vi) and, therefore, the full outer
iteration loop was not employed for computational savings. At this point, however, we can not exclude the
possibility that the full loop might be necessary for certain flow cases.

Further, in Eqs. (30) and (39) an explicit formulation for ~u and �u is used. In the explicit formulation, the
right-hand sides of these two equations are the same, therefore, in the computer code there is no need for
these two equations to be calculated twice. However, for some test cases like the non-isothermal channel
flow with a non-uniform mesh in one direction, an implicit treatment of the transport terms in that specific
direction would increase the allowable time step of the calculation. If an implicit treatment of ~u and �u is
chosen, then the right-hand sides of (30) and (39) would be different. We therefore conclude that, depending
on the application, Eqs. (30) and (39) might need to be calculated separately.

It is also worth mentioning that in some earlier works, [4,22,23], the authors reported stability problems
triggered by the pressure Poisson equation. However, in our test cases no such stability problems were ob-
served with the algorithm proposed herein. The robustness of the present algorithm can be attributed to the
following elements: (i) the use of a predictor–corrector time-marching technique, (ii) the use of the balance
equations to evaluate the flow variables and not their time-derivatives (as done in [21], for example) and,
(iii) the particular sequence in the calculation of the thermodynamic variables that is embedded in the
time-marching technique. According to this sequence, the temperature is calculated first from the energy
equation, followed by the calculation of the thermodynamic pressure from (21) and, subsequently, by
the calculation of the density from (20).

The combined use of elements ii and iii above has a clear advantage, at least for flows in closed domains.
To be more specific, if we consider the predictor stage, the solvability conditions of the pressure Poisson
equation, with the boundary conditions mentioned above, imply that the volume integral of the left-hand
side of equation (29) must be equal to zero, i.e.,
Z

r � ðq�u�ÞdV �
Z

r � ðq�~uÞdV ¼ 0. ð44Þ
Similarly, the volume integral of the left-hand side of (38) in the corrector stage must also be zero. For a
closed system, the sequence with which the flow variables are calculated in the present scheme ensures that
at each step we have
Z

q�dV ¼
Z

qndV ¼
Z

qn�1dV ¼ M0. ð45Þ
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Therefore, from Eq. (31), the first integral in Eq. (44) is equal to zero, i.e., �$ Æ (q*u*)dV = 0. The second
integral in Eq. (44) is also equal to zero, by virtue of the Gauss�s theorem and the fact that the ~u is zero at
the solid walls, (the same holds if periodic boundary conditions are used instead of the solid walls). Con-
sequently, condition (44) is always satisfied to machine accuracy.

On the other hand, in an open system the total mass may not be constant. Therefore, the two integrals in
the left-hand side of (44) may not be simultaneously equal to zero. Even so, in the present algorithm, the
value for ~u at the outflow boundary is still set in a way that the solvability condition (44) is satisfied. In the
numerical tests that we conducted for validation purposes we did not observe any stability problems arising
from this choice of outflow condition for ~u. Nonetheless, the possibility to encounter such stability prob-
lems for certain type of flows can not be excluded at this time.

Further, it is important to mention that, because of the need to specify boundary conditions for ~u, it is
not possible to implement non-reflecting outlet boundary conditions in a straightforward manner with the
proposed algorithm. This is a weakness of the algorithm because it implies that outlet boundaries of the
computational domains have to be taken sufficiently far, i.e., in regions of the flow where the spatial deriv-
atives of the flow variables are very small.

The proposed time-integration method has been tested in a series of flow problems with strong temper-
ature gradients, some of which are presented in Section 4 below. In these tests, the algorithm was found
capable of successfully predicting flows with strong temperature and density gradients. (For example, in
non-isothermal channel flows, the algorithm could handle wall-temperature ratios as high as 9, at least).
This by no means implies that the proposed method can handle arbitrarily large density or temperature gra-
dients. In fact, it is expected that if these gradients become sufficiently large, then the algorithm will break.
The limit of temperature gradients at which the algorithm breaks depends, of course, in the spatial and tem-
poral resolution as well as the Reynolds, Prandtl and Schmidt numbers of the flow.

3.2. Spatial discretization in a collocated grid system

In this section, we describe the spatial discretization scheme for the governing equations (15)–(18). As
mentioned in the Section 1, the proposed algorithm employs a collocated grid system. As mentioned in
the Section 1, the advantages of collocated grids over staggered ones are computational simplicity and
straightforward extension of the method to curvilinear coordinate systems. On the other hand, particular
attention should be paid to the fact that collocated grids can produce spurious oscillations of the pressure
field. This problem is known in the literature as odd–even decoupling. It has been shown that for incom-
pressible flows the pressure odd–even decoupling of collocated grids can be remedied with a flux interpo-
lation method, [18,27]. Herein this method is generalized to variable density flows.

First, all second-order differential operators that model transport phenomena (viscosity, heat conduction
and mass diffusion) are discretized using second-order central differences. The discretization of the convec-
tive terms is achieved via the introduction of the following three auxiliary scalar fluxes
F i � qui; i ¼ 1; 2; 3; ð46Þ

which are staggered with respect to other variables in space. This implies that each auxiliary flux Fi is
defined on the center of the cell interface that is normal to the xi direction, whereas all flow quantities
are evaluated at the centers of the computational cells. The auxiliary fluxes are calculated via interpolation.
By convention, these fluxes are assigned the same indices with the associated computational cell.

In the discussion that follows we will use extensively two discrete operators, the finite-difference and the
interpolation operators. Their definition is as follows. If Dx1 is the grid spacing in the x1 direction, the gen-
eral finite-difference operator acting on /(x1, x2, x3) in the x1 direction is defined as
dn/ðx1; x2; x3Þ
dnx1

¼
/ðx1 þ n Dx1

2
; x2; x3Þ � /ðx1 � n Dx1

2
; x2; x3Þ

nDx1
. ð47Þ



228 B. Lessani, M.V. Papalexandris / Journal of Computational Physics 212 (2006) 218–246
Completely similar definitions hold for the operator acting in the x2 and x3 directions. The general inter-
polation operator acting on the x1 direction is defined as
�/
nx1ðx1; x2; x3Þ ¼

/ðx1 þ n Dx1
2
; x2; x3Þ þ /ðx1 � n Dx1

2
; x2; x3Þ

2
; ð48Þ
with similar definitions for the operator acting on the other two spatial directions.

3.2.1. Second-order schemes

In accordance with the proposed time marching technique that was described above, one has to compute
the auxiliary fluxes in both the predictor as well as in the corrector stage. This means that one has to com-
pute F �

i and F nþ1
i in addition to the velocities u* and un+1. In the predictor step, F �

i is evaluated from Eq.
(27) combined with an interpolation for q�~ui in the xi direction, cf. (30). This results in the following
expression:
F �
i ¼ q�~ui

1xi � Dt
d1pð1Þ�

d1xi
. ð49Þ
It is worth clarifying that the discrete operators that appear in the above equation act on the same points as
the auxiliary fluxes themselves. Further, let I, J and K denote the indices of a given computational cell in the
x1, x2 and x3 directions, respectively. Then, by using (49), the following expressions for the auxiliary fluxes
Fi are obtained:
F �
1I;J ;K

¼
q�
I ;J ;K~u1I;J ;K þ q�

Iþ1;J ;K~u1Iþ1;J ;K

2
� Dt

pð1Þ�Iþ1;J ;K � pð1Þ�I ;J ;K

Dx1
; ð50Þ

F �
2I;J ;K

¼
q�
I ;J ;K~u2I;J ;K þ q�

I;Jþ1;K~u2I ;jþ1;K

2
� Dt

pð1Þ�I;Jþ1;K � pð1Þ�I ;J ;K

Dx2
; ð51Þ

F �
3I;J ;K

¼
q�
I ;J ;K~u3I;J ;K þ q�

I;j;Kþ1~u3I ;j;Kþ1

2
� Dt

pð1Þ�I ;J ;Kþ1 � pð1Þ�I ;J ;K

Dx3
. ð52Þ
Similarly, for the corrector stage, the expressions for the auxiliary fluxes F nþ1
i are obtained from Eq. (37)

combined with an interpolation for the term qnþ1�ui, cf. (39),
F nþ1
i ¼ qnþ1�ui

1xi � Dt
d1pð1Þnþ1

d1xi
. ð53Þ
By expanding this relation we can arrive at expressions of F nþ1
i that are analogous to Eqs. (50)–(52), above.

Once the auxiliary fluxes are known, the velocity vectors u* and un+1, which are collocated with the pres-
sure, are calculated from Eqs. (27) and (37), respectively:
u�i ¼
1

q� q�~ui � Dt
d2pð1Þ�

d2xi

� �
; ð54Þ

unþ1
i ¼ 1

qnþ1
qnþ1�ui � Dt

d2pð1Þnþ1

d2xi

� �
. ð55Þ
Further, Eq. (31) of the predictor stage, which arises from the temporal discretization of the continuity
equation (15), can be discretized in space by employing the auxiliary fluxes Fi instead of centered finite-
differences at the collocated points. This results in
3q� � 4qn þ qn�1

2Dt
þ d1F �

i

d1xi
¼ 0. ð56Þ
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Similarly, the discretization of that appears in (40) of the corrector stage is
3qnþ1 � 4qn þ qn�1

2Dt
þ d1F nþ1

i

d1xi
¼ 0. ð57Þ
Also, spatial discretization of Eqs. (29) and (38) can be obtained by applying the d1 discrete finite-difference
operator (47) in Eqs. (49) and (53), respectively. The emerging equations that arise contain the divergence
term d1Fi/d1 xi. An expression for this term can be obtained directly by (56) and (57) above. Thus, we finally
arrive at the following discretization of the Poisson equations (29) and (38):
3q� � 4qn þ qn�1

2Dt
þ d1q�~ui

1xi

d1xi
¼ Dt

d1
d1xi

d1pð1Þ�

d1xi

� �
; ð58Þ

3qnþ1 � 4qn þ qn�1

2Dt
þ d1qnþ1�ui

1xi

d1xi
¼ Dt

d1
d1xi

d1pð1Þnþ1

d1xi

� �
. ð59Þ
Further, once the auxiliary fluxes Fi are known, the convective terms that appear in the residuals defined in
(28), (24), and (33) can be approximated as
oquiuj
oxj

’ d1F ju
1xj
i

d1xj
; ð60Þ
and
quj
oT
oxj

’ F j
d1T
d1xj

1xj

; quj
oY k

oxj
’ F j

d1Y k

d1xj

1xj

; ð61Þ
respectively. Alternatively, the convective terms (24), (33) may also be discretized in the following way,
uj
oT
oxj

’ �u1xjj
d1T
d1xj

1xj

; uj
oY k

oxj
’ �u1xjj

d1Y k

d1xj

1xj

. ð62Þ
Numerical experiments showed that the approximations given in (61) or (62) might be more stable than the
other depending on the problem in hand; see Sections 4.1 and 4.2 for more details.

3.2.2. Fourth-order schemes

Herein we describe the fourth-order interpolation and differentiation techniques that are used to discret-
ize the equations. Due to the similarity between the predictor and corrector stages of the time-marching
method we will present the discretized forms of the equations appearing in the predictor step only. The
fourth-order auxiliary fluxes and velocities are evaluated as
F �
i ¼

9

8
q�~ui

1xi � 1

8
q�~ui

3xi � Dt
9

8

d1pð1Þ�

d1xi
� 1

8

d3pð1Þ�

d3xi

� �
ð63Þ
and
u�i ¼
1

q� q�~ui � Dt
4

3

d2pð1Þ�

d2xi
� 1

3

d4pð1Þ�

d4xi

� �� �
. ð64Þ
respectively. The fourth-order spatial discretization for Eq. (31) is,
3q� � 4qn þ qn�1

2Dt
þ 9

8

d1F �
i

d1xi
� 1

8

d3F �
i

d3xi
¼ 0. ð65Þ
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For the Poisson equation, the equivalent fourth-order spatial discretization of (29) is written as
3q� � 4qn þ qn�1

2Dt
þ 9

8

d1
d1xi

9

8
q�~ui

1xi � 1

8
q�~ui

3xi
� �

� 1

8

d3
d3xi

9

8
q�~ui

1xi � 1

8
q�~ui

3xi
� �

¼ Dt
9

8

d1
d1xi

9

8

d1pð1Þ�

d1xi
� 1

8

d3pð1Þ�

d3xi

� �
� 1

8

d3
d3xi

9

8

d1pð1Þ�

d1xi
� 1

8

d3pð1Þ�

d3xi

� �� �
.

ð66Þ
Finally, the fourth-order approximations of the convective terms that appear in the residuals defined in
(28), (24), and (33) are written as
oquiuj
oxj

’ 9

8

d1F ju
1xj
i

d1xj
� 1

8

d3F ju
3xj
i

d3xj
; ð67Þ

uj
oT
oxj

’ 4

3
�u1xjj

d1T
d1xj

1xj

� 1

3
�u2xjj

d2T
d2xj

2xj

ð68Þ
and
uj
oY k

oxj
’ 4

3
�u1xjj

d1Y k

d1xj

1xj

� 1

3
�u2xjj

d2Y k

d2xj

2xj

; ð69Þ
respectively.
4. Numerical results

In this section, we present detailed results from two test problems that we considered in order to check
the robustness and accuracy of the proposed algorithm. The first one is the large-eddy simulation of non-
isothermal, turbulent channel flow. This is a case without chemical reactions but with strong temperature
gradients due to the temperature difference between the two walls. The second test case is the flame–vortex
interaction; this is a case of a laminar, unsteady reacting flow.
4.1. Large-eddy simulation of non-isothermal, turbulent channel flow

In this subsection, we consider turbulent flow in a channel whose walls are kept in different temperatures.
This problem is treated numerically via LES. Let x, y and z, denote the streamwise, normal and spanwise
directions, respectively. The dimensions of the domain are 4pd� 2d� 4

3
pd, with d being the channel half-

width. The walls of the channel are normal to the y direction and are held at constant temperature. On the
other hand, the boundaries of the domain normal to the x and z directions are periodic. Therefore, the total
mass of the system is conserved, i.e., this is an example of flow in a closed domain. A mesh of 643 points is
used. Uniform meshes are used in the streamwise and spanwise directions. A non-uniform mesh with hyper-
bolic tangent distribution is used in the wall-normal direction.

The dynamic subgrid-scale (SGS) model, Moin et al. [17] with the least square technique, Lilly [13] and
averaging in the periodic directions is employed for the subgrid-scale terms. In the homogeneous directions,
the convective terms of the momentum and energy equations are calculated using Eqs. (67) and (68), respec-
tively. In the normal direction, Eq. (60) is used for the momentum equation and Eq. (62) for the energy
equation. The fast Fourier transform is used in the periodic directions to solve the constant-coefficient pres-
sure Poisson equation.

Let Th and Tc denote the temperatures of the hot and cold walls, respectively. Three different cases, cor-
responding to different wall temperature ratios, are considered herein. More specifically, we have considered
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ratios of Th/Tc = 1.01, 2 and 8. For the cases of Th/Tc = 1.01, 2 the initial fluid temperature was set at Tc. For
the case Th/Tc = 8 the initial condition was taken from previously calculated solutions with smaller wall-
temperature ratios to shorten the required simulation time to reach stationary state. This strategy had been
employed previously in Wang and Pletcher [29]. The simulation parameters are listed in Table 1. It is noted
that in this section all parameters are defined using the dimensional quantities. However, unlike section (2)
where a superscript �̂ denoted a dimensional variable, in this section the superscripts are dropped for the sake
of clarity. Subscripts h and c denote the hot and cold wall, respectively. The subscript ‘‘w’’ is used for the
values at the walls, w = {h, c}.
Table 1
Simulation parameters for the non-isothermal channel flow

Th/Tc Recent Resh � Resc ush=�us � usc=�us Bqh Bqc

1.01 3281 178.3–180.4 1.0–1.0 2.32 · 10�4 2.33 · 10�4

2.0 2521 91.2–224.1 1.13–0.86 1.35 · 10�2 1.8 · 10�2

8.0 1201 26.6–360.2 1.4–0.57 2.7 · 10�2 7.2 · 10�2
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Fig. 1. Non-isothermal channel flow. Mean streamwise velocity profile hui=�us in wall coordinates yþ ¼ qw�usy=lw at Th/Tc = 1.01
compared with the isothermal DNS of Kim et al. [11].
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Also, Recent = qcentucentd/lcent is the Reynolds number based on the values on the centerline. Res =
qwusd/lw is the Reynolds number based on the values near the wall. The friction velocity is us = (sw/
qw)

1/2, where sw is the wall shear stress and qw is the density of the flow in the vicinity of the wall. The aver-
age friction velocity is �us ¼ ðush þ uscÞ=2. Bq is the heat flux parameter defined as Bq = qw/(qwcpusTw), with
qw the heat flux and cp the specific heat at constant pressure. A friction temperature Ts is also defined as,
Ts = qw/(qwcpus) and the average friction temperature is defined as, T s ¼ ðT sh þ T scÞ=2.

The flow is driven by the same mean pressure gradient for all three temperature ratios. As a result, by
increasing the temperature ratio, the centerline Reynolds number decreases, with a maximum of 3281 for
the temperature ratio of 1.01, and a minimum of 1201 for the temperature ratio of 8. The difference between
the friction Reynolds numbers of two walls increases with the temperature ratio. Thus, in order to have a
well resolved flow near the wall, one has to pay attention to ensure that the distance of the first grid point
away from the wall satisfies
Fig. 2.
at Th/
yþf.p. �
qwusyf.p.

lw

< 1. ð70Þ
In the present calculations this condition was always satisfied.
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Tc = 1.01 compared with the isothermal DNS of Kim et al. [11].
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For comparison purposes between our results and the other LES and Direct Numerical Simulations
(DNS) data, we used a molecular Prandtl number of 0.7 for the first case (Th/Tc = 1.01) and a value of
0.8 for the other two cases (Th/Tc = 2 and 8). In principle, the turbulent Prandtl number can be calculated
using the dynamic procedure. During our numerical experiments, however, it was predicted that it re-
mained almost constant from wall to wall for the cases we considered. Therefore, it was subsequently
set to a constant value of Prt = 0.9 for the sake of computational savings.

As in earlier LES studies of non-isothermal channel flows, [22,29], buoyancy forces are neglected. This
approximation is valid for values of the ratio Gr/Re2 much smaller than unity, Gr being the Grashoff num-
ber of the problem. This ratio is directly proportional to the width of the channel. Therefore, buoyancy
effects can be neglected for sufficiently small channel widths. For example, for the case of wall-temperature
ratio equal to 8, Recent = 1201 and for channel width equal to 2 cm, then Gr=Re2cent ¼ 0.028. LES studies on
flows for which such effects are important certainly represent an interesting subject but they are beyond the
scope of the present article.

Let Æ/æ denote the time and space average of the instantaneous variable /. Space averaging is performed
in the homogeneous directions. The fluctuating part of the instantaneous variable / is defined as / 0 =
Æ/æ � /, with /rms = Æ/ 0/ 0æ1/2. The mean streamwise velocity profiles hui=�us and the turbulence intensities
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Fig. 3. Non-isothermal channel flow. Distribution T rms=T s for the channel flow at Th/Tc = 1.01 in wall coordinates compared with the
LES of Châtelain et al. [1] and DNS of Debusschere and Rutland [6].
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(urms=�us, vrms=�us, wrms=�us) for Th/Tc = 1.01 are shown in Figs. 1 and 2, respectively, as functions of the wall
coordinates yþ ¼ qw�usy=lw. In Fig. 1, the logarithmic law of the wall, u+ = 2.5 lny+ + 5.5, is also plotted
for comparison. The results are compared with the DNS data of Kim et al. [11]. The agreement between
those DNS data and our LES results is very good. For this small temperature ratio, the temperature dif-
ference has almost no effect on the properties of the fluid and the graphs of hot and cold sides collapse onto
a single graph. Accordingly, for the other graphs of this case we will only show the cold side distributions.

In Fig. 3, we compare our LES results for the temperature fluctuation distribution T rms=T s with the DNS
data of Debusschere and Rutland [6] and the LES results of Châtelain et al. [1]. It can be observed that
there are discrepancies between LES and DNS data at large values of y+. However, the discrepancy of
our LES results with respect to the DNS data is smaller than the discrepancy of the LES results in [1].

In [1], the authors proposed upwinding the convective terms in the energy equation to have a better
agreement between the DNS and LES data. However, they also mentioned that upwinding leads to an
under-prediction of the temperature–velocity correlation hu0T 0i=ð�usT sÞ and also the temperature fluctua-
tions non-dimensionalized by the walls temperature difference, Trms/DT, (Figs. 19 and 20 in [1]). For this
reason, we opted to maintain central differencing of the convective terms in the energy equation in our
algorithm.
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Fig. 4. Non-isothermal channel flow. Distribution of hT 0u0i=T s�us for the channel at Th/Tc = 1.01 in wall coordinates compared with
the LES of Châtelain et al. [1] and the DNS of Debusschere and Rutland [6].
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The Nusselt number, defined as
–

Fig. 5.
with th
Nu ¼ 4dðoT =oyÞw
T w � T b

; ð71Þ
with Tb the bulk temperature, is equal to 23.6 in the present study. This compares well to the Nusselt num-
ber values of 23.3 and 24.3 that were reported in [1,6], respectively. The bulk temperature Tb, is defined
using the bulk density qb and velocity Ub
qb ¼
1

2d

Z d

�d
qdy; Ub ¼

1

2dqb

Z d

�d
qudy; T b ¼

1

2dqbUb

Z d

�d
quT dy. ð72Þ
The temperature–velocity correlation hT 0u0i=ðT s�usÞ and mean temperature profile hT i=T s are reported in
Fig. 4 and 5. For these two graphs, there is a good agreement between the DNS and LES data.

Fig. 6 shows the mean velocity profiles huþVDi=usc in wall coordinates for the cold wall region for three
different temperature ratios. Fig. 7 shows the same graphs for the hot wall region. In these figures, the
van Driest velocity transformation, van Driest [7], was employed to collapse the results of a variable density
flow into the classical logarithmic law. This transformation is expressed as
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uþVD ¼
Z uþ

0

q
qw

� �1=2

duþ. ð73Þ
In Fig. 6, we can observe a significant deviation of the velocity profiles from the reference empirical law of
the wall for the case of temperature ratio of 8, at the side of the cold wall. On the other hand, no such devi-
ation is observed at the side of the hot wall, Fig. 7. The same over-prediction at the cold wall side was re-
ported in [29] for a temperature ratio of 3. This deviation may be attributed to the fact that the van Driest
transformation does not provide an effective means for collapsing results of variable density flows if the
temperatures (density) variations are too high. On the other hand, the result reported in [22] for a temper-
ature ratio of 4 showed good agreement with the logarithmic law by use of the van Driest transformation.
In [22], however, the dimensionless thermal conductivity and dynamic viscosity were chosen to be propor-
tional to 1=

ffiffiffiffi
T

p
instead of following Sutherland law. Such dependence of the transport coefficients on the

temperature is non-physical.
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And finally, in Figs. 8–10 we present results of the turbulence kinetic energy,
+

Fig. 7.
three d
kt ¼
1

2

hu0iu0ii
�u2s

; ð74Þ
the temperature fluctuations normalized by the wall temperature difference and the mean temperature dis-
tribution across the channel, respectively. We note that the fully developed condition requires that the wall
heat flux be the same on both walls. According to the Sutherland law, the thermal conductivity increases with
the temperature, which results in a steeper temperature gradient on the cold wall than on the hot wall. This
behaviour can be clearly seen in Fig. 10. The turbulence kinetic energy is also smaller for higher temperature
ratios. This can be contributed to the decrease of the bulk Reynolds numbers in higher temperature ratios for
a fixed pressure gradient.

4.2. Flame–vortex interaction

In this subsection, we present simulations of the 2D problem of the interaction of a vortex pair with a
laminar premixed flame. This test case has been studied by many authors in the past (see [3,19–21,25] and
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references therein) and serves us as a useful test case to assess the stability of the present algorithm in flows
with chemical reactions and in flows in open domains. The chemistry model is a simple, single-step, irre-
versible reaction represented by
Fig. 8
tempe
RðReactantsÞ ! P ðProductsÞ ð75Þ

and governed by Arrhenius kinetics. Let SL denote the laminar flame speed and a the heat diffusivity in the
fresh gas. The reference length of this problem is defined as Lref = a/SL. The reference velocity is set equal
to the laminar flame speed, uref = SL. Then, the reference time is tref = Lref/uref. The temperature, density
and fuel mass fraction in the fresh gas are used as the reference values for these quantities. Non-dimension-
alization of all variables has been made with respect to these reference values.

The nondimensional form of the Arrhenius kinetics law is given by
_wR ¼ trefBqY R expð�T a=T Þ; ð76Þ

where Ta is the activation temperature and B is the pre-exponential constant that sets the chemical time
scale. The simulation parameters of the laminar premixed flame and the reference values used in Eq.
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(76) are given in Table 2. The parameters are chosen in a way that that the laminar flame approximates the
stoichiometric methane/air flame at normal conditions.

The first step of the simulation is to calculate the profile of a steady, one-dimensional laminar premixed
flame. In this study, the proposed algorithm has been used to generate this profile as the steady-state solu-
tion of the initial-value problem of a discontinuous profile consisting of two different uniform states. The
profiles for the density, fuel mass fraction and temperature across the flame, as computed with the proposed
algorithm, are plotted in Fig. 11. It can be observed that the temperature jump across the flame is Tb/
Tu = 7.4, with Tb and Tu the temperatures of the burnt and unburnt gases, respectively. This value is close
to the adiabatic flame temperature of stoichiometric combustion of methane/air at normal conditions.

The flame thickness d0L defined as, see Poinsot and Veynante [24],
Fig. 9.
and 8.
d0L ¼
T b � T u

maxðj oT
ox jÞ

. ð77Þ
For the flame under consideration, the (dimensional) flame thickness is equal to d0L ¼ 0.33 ðmmÞ. Another
thickness, called the total thickness dtL, defined as the distance over which the reduced temperature
h = (T � Tu)/(Tb � Tu) changes from 0.01 to 0.99. In this case, its value is dtL ¼ 0.81 ðmmÞ.
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Fig. 10. Non-isothermal channel flow. Distribution of normalized temperature, (T � Tc)/(Th � Tc), across the channel at three
different temperature ratios. Th/Tc = 1.01, 2 and 8.

Table 2
Simulation parameters for the premixed laminar flame

Lref (m) uref (m/s) B (1/s) Ta Dh0R Pr Re

5.45 · 10�5 0.416 7 · 106 30 6.4 0.7 1.43

Lref, uref and B are dimensional. Ta and Dh0R are normalized by the reference quantities. Re = urefLref/m.

240 B. Lessani, M.V. Papalexandris / Journal of Computational Physics 212 (2006) 218–246
The initial condition for the flame–vortex interaction problem consists of the superposition of the initial
profile and the field generated by system of two counter-rotating vortices on the upstream side of the flame
front. If u and v denote the velocities in the x and y directions, the velocity field of a vortex located at x0 and
y0 is defined as
u ¼ Cðy � y0Þ
R2

expð�r2=2Þ; v ¼ �Cðx� x0Þ
R2

expð�r2=2Þ; ð78Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiq

with r ¼ ððx� x0Þ2 þ ðy � y0Þ

2Þ=R. Also, in the equation above, C and R represent the vortex strength
and vortex radius, respectively. In our case, we have used the following values: C = ±70 and R = 4. The
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initial locations of the clockwise and counterclockwise rotating vortices are at (x0 = 37.5, y0 = 75) and
(x0 = 62.5, y0 = 75), respectively. The maximum rotational velocity of the initial vortices is 10.6, but as
they approach the flame, they loose their strength due to the fluid viscosity and the interaction with the
flame.

A rectangular domain of size Lx = 100 and Ly = 200 is considered. The flame front is initially located in
the middle of the domain at Ly/2 along the x direction. Periodic conditions are applied on the boundaries
normal to the y direction. Inflow boundary conditions (constant flow variables) are applied along y = 0 and
outflow boundary conditions (zero normal derivatives) are applied along y = Ly. In other words, this is a
case of a flow in an open domain. The spatial derivatives are discretized with the second-order method
described in Section 3.2.1. The convective terms of the momentum, energy and species equations are cal-
culated using Eqs. (60) and (61), respectively. The fast Fourier transform is used in the periodic direction
to solve the constant-coefficient pressure Poisson equation.

The flow field is computed on three different regular grids; namely, 64 · 128, 128 · 256 and 256 · 512
points. Fig. 12 shows four instantaneous contour fields of temperature and vorticity on the finest grid.
The time span is from t = 10 to 25 with a time interval of 5. In Fig. 12(a), the vortices are still far from
the flame front. Consequently, the front is not yet affected by the presence of the vortices. As the vortices



Fig. 12. Flame–vortex interaction. Instantaneous contour fields of temperature and vorticity. (a) t = 10, (b) t = 15, (c) t = 20,
(d) t = 25. Bold (—) and dashed (––) lines correspond to positive (counterclockwise rotation) and negative (clockwise rotation)
vorticities, respectively.
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come closer to the flame, Fig. 12(b), they begin to stretch the reaction zone and the geometry of the flame
becomes distorted due to the local compressive tangential strain. Further, the flame thickness is increased at
the two curved ‘‘cusp’’ locations. As mentioned, among other, in [21], the dependence of the flame thickness
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on stretch is a result of the convective strain field acting on the flame. When the vortices interact further
with the flame, Fig. 12(c), flame-generated vorticity starts to appear in the product gas above the flame
front, Mueller et al. [19]. In Fig. 12(d), the flame generated vorticity is convected and diffused away from
the flame front. The shape of the initial vortices is thus elongated in the y direction.

The figures mentioned above confirm that the shape of the reaction zone (stretched by the vortex pair)
and the deformation of the vortices are very similar to the ones reported in previous studies; see, for exam-
ple [3,19,21]. Quantitative comparisons between our results and these earlier ones cannot be made because
in the earlier works the authors have either considered detailed reaction mechanisms and/or they have not
provided sufficient information to reproduce the initial profile of the laminar flame.

Profiles of the density, velocity in the y direction and fuel mass fraction along the centerline at t = 25 for
the three different resolutions are shown in Fig. 13. Finally, the time evolution of the total reaction rate for
the different grid resolutions is shown in Fig. 14. The total reaction rate increases in time because of in-
creased flame surface that results from the interaction of the flame with the vortices. Plots of this rate,
but for flames with different reaction parameters, have been previously presented in [3]. Nonetheless, our
predictions for its growth in time is very similar to the prediction in [3]. Finally, it is important to mention
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that the results obtained with three different resolutions, Figs. 13 and 14 confirm that numerical conver-
gence is in fact obtained by successive refinement of the grid refinement. In particular, it can be observed
in these plots that the differences in the numerical results from two successive resolutions are getting smaller
as the grid is refined.
5. Conclusions

In this article, a new algorithm for time-accurate calculations of low Mach number, variable density
flows has been presented. This algorithm can be applied to both open and closed domains. It is based
on a two-stage predictor–corrector method. This algorithm is particularly useful for unsteady flows with
strong temperature gradients and for reacting flows. A constant-coefficient Poisson equation, which is com-
putationally more efficient than the variable-coefficient one, is solved for the pressure. In the past, the
approximation of the time derivative of the density field in the pressure Poisson equation has been identified
as a destabilizing factor of the algorithms. However, in the numerical simulations performed with the
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proposed algorithm no such stability problems were observed. For spatial discretization we opted for a col-
located grid and not a staggered one because collocated grids offer computational simplicity and straight-
forward extension to curvilinear coordinate systems. The odd–even decoupling problem that is typically
encountered in collocated grids is avoided by using a flux interpolation technique.

The robustness and accuracy of the algorithm have been assessed through simulations of two well-
known test problems; the turbulent channel flow with temperature gradients and the flame–vortex interac-
tion problem. The results obtained with the proposed algorithm are in very good agreement with the ones
reported in earlier studies. Additionally, the proposed algorithm is robust enough to efficiently handle cases
with strong temperature and density gradients. Results for such cases had not yet been available in the
literature.
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